193

The Unimolecular Decomposition of Excited Biradicals Formed by the Addition of Triplet ¹⁴C-Methylene to *cis-* or *trans-*But-2-ene

By DEREK C. MONTAGUE and F. S. ROWLAND*

(Department of Chemistry, University of California, Irvine, California 92664)

Summary Unimolecular decomposition by CH_3 loss has been observed with a half-pressure for stabilization of about 75 Torr for the excited biradicals formed by the addition of triplet ${}^{3}({}^{14}CH_2)$ to both *cis*- and *trans*-but-2-ene; as much as 9% of the ${}^{14}C$ activity is found in C₈ compounds formed by radical combination reactions of ${}^{14}C$ -labelled butenyl radicals.

WE have reinvestigated the reactions of the 1,2-dimethyl-1,3-trimethylene triplet biradical formed by addition of ${}^{3}CH_{2}$ to *cis*- and *trans*-but-2-ene¹⁻³ and now report results pertinent to the subsequent reactions of this intermediate radical. In our experiments, triplet ${}^{14}CH_{2}$ was formed by Hg 6 (${}^{3}P_{1}$) photosensitization of ${}^{14}CH_{2}CO$, and was reacted with a 10-fold excess of the but-2-ene substrate, thus enabling the molecular fate of the methylene carbon atom to be determined by radio-gas-chromatographic analysis, uncomplicated by those non-radioactive products derived from the concurrent photosensitization of the but-2-ene itself.⁴⁻⁶ The most significant new observation was that as much as 9% of the ¹⁴C was eventually found in C₈ compounds, indicating an earlier decomposition of the biradical to form a ¹⁴C-labelled C₄ monoradical. These observations furnish mechanistic information of interest in connection with the renewed experimentation on the chemical behaviour of the trimethylene biradical and its alkyl substituents.⁷⁻¹³

Triplet ${}^{14}\text{CH}_2$ reacts principally in these systems either by addition to the olefin, as in (1), or by abstraction of H to form ${}^{14}\text{CH}_3$, as in (3). The ${}^{14}\text{C}$ -labelled products found in these systems include ethane formed by the combination of ${}^{14}\text{CH}_3$ with CH₃ radicals, *tracer-labelled* 3,4-dimethylhex-1-ene (DMH), and other ${}^{14}\text{C}$ -containing C₈ compounds not individually identified, as shown in the Table. The remainder of the ${}^{14}\text{C}$ activity has been found among various other compounds, including several C₅ olefins, with essentially 100% recovery of ${}^{14}\text{C}$.

We propose that the labelled DMH and other C_8 com-

pounds are formed by the combination with other C_4 radicals of ¹⁴C-labelled butenyl radicals resulting from the

Yields of s	some 14	C-labe	elled pro	ductsª j	from the	e reactio	ons of ³	$({}^{14}CH_2)$
			w	ith but-	2-ene			
			trans-	But-2-e	ene			
Total pressure (Torr)			51	200	399	597	833	1100
C ₂ H ₄	`	· ·	15.9	$14 \cdot 2$	12.2	11.0	10.0	9.1
DMHЪ			4 ·1	$2 \cdot 1$	1.1	0.8	0.7	0.6
ΣC_{s}^{b}	••		5.8	4.2	$2 \cdot 9$	$2 \cdot 1$	$2 \cdot 3$	$2 \cdot 4$
ΣDMC ^{b,c}	••	••	$21 \cdot 9$	$37 \cdot 1$	$45 \cdot 1$	48.3	49 ·1	48 ·0
			cis-B	ut-2-er	ne			
Total pressure (Torr)			49	151	486	833	1101	
C ₂ H ₆	•• `	••	18.7	19.0	15.7	11.9	$9 \cdot 3$	
DMHÞ	••		3.6	$3 \cdot 6$	1.0	0.5	0.5	
ΣC_{s}^{b}			5.8	5.8	3.5	$2 \cdot 5$	$2 \cdot 3$	
ΣDMC ^{b, c}	••		15.3	$22 \cdot 4$	$32 \cdot 5$	36.5	38.5	

^a Expressed as percent ¹⁴CH₂ appearing as each product. Typical other yields, not discussed here, included (given for *trans*-but-2-ene at 399 Torr as an example): Σ pent-2-enes, 19.5%; Σ other pentenes, 7.7%; CH₄, 2.8%; isopentane, 4.5%; Σ unsaturated C₂-C₄, 3.5%; CO, 0.6%; CO₂, 0.1%. Butene: ketene = 10 in all experiments; ^b Abbreviations as defined in text; ^c The Σ DMC includes a small contribution for restrict the billion of the set of the Σ DMC includes a small contribution from reactions initiated by ¹(¹⁴CH₂).

unimolecular decomposition of the vibrationally excited biradical formed in (1), as shown in (2). This reaction is analogous to the ground state singlet biradical decom-

position in the pyrolysis of 1,1,2,2-tetramethylcyclopropane.14

The observation of 14C-labelled 3-methylbut-1-ene, transand cis-pent-2-ene could signify methyl-butenyl combination following either reaction (3) or reactions (1) plus (2), and these mechanistically different paths would only be distinguishable in the product through intramolecular position of the ¹⁴C. Differing intramolecular locations of radioactive tritium atoms have previously been observed with these olefinic products following the long wavelength photolysis (ca. 366 nm) of CHTCO-but-2-ene mixtures.15 However, the explanation of McKnight and Rowland¹⁵ that olefinically-tritiated 3-methylbut-1-ene is formed by an intra-molecular 1,2-methyl shift in a vibrationally excited biradical such as that formed in (1) should now be replaced by a mechanism involving the two-step biradical decomposition (1) plus (2), followed by methyl-butenyl combination. When carried out with ³CHT from the photolysis of CHTCO, this reaction sequence leads to the tritiumlabelled combination product (CH_a)₂CHCH=CHT. As anticipated for this two-step mechanism, the formation of $(CH_3)_2$ CHCH=CHT is collisionally suppressed at higher pressures.15,16

At high pressures, fragmentation of the biradical will be effectively quenched, resulting in an increased yield of dimethylcyclopropanes (Σ DMC in the table), cyclization being the only other major reaction channel available to the biradical. A similar trend in product yields has been noted in the Hg 6 (3P1) photosensitized decomposition of cis- and trans-3,4-dimethyl- Δ^1 -pyrazoline.¹³ Analysis of our data shows that approximately one-half of the excited biradicals decompose at about 75 Torr.

Thus the loss of methyl from the vibrationally excited triplet 1,2-dimethyl-1,3-trimethylene biradical is an example of a general molecular fragmentation process occurring in biradicals of this type to form allylically resonance stabilized radicals. Other examples of this reaction have already been reported and include the formation of allyl radicals both in the reaction of ³CH₂ with ethylene¹⁷ and in the short wavelength photolysis of cyclobutanone,¹⁸ and the production of vinyl cyclopropane via a resonance stabilized biradical formed by decomposition of the adduct of ³CH₂ with cyclobutene.19

Acknowledgment is made to the U.S. Atomic Energy Commission for support.

(Received, September 10th 1971; Com. 1588.)

- F. J. Duncan and R. J. Cvetanovic, J. Amer. Chem. Soc., 1962, 84, 3594.
 F. A. L. Anet, R. F. W. Bader, and A. Van der Auwera, J. Amer. Chem. Soc., 1960, 82, 3217.
 H. M. Frey, J. Amer. Chem. Soc., 1960, 82, 5947.

- ¹ M. Fley, J. Amer. Chem. Soc., 1960, 62, 624.
 ⁴ D. C. Montague and F. S. Rowland, J. Phys. Chem., 1968, 72, 3705.
 ⁵ J. K. Lee, E. K. C. Lee, B. Musgrave, Y.-N. Tang, J. W. Root, and F. S. Rowland, Analyt. Chem., 1962, 34, 741.
 ⁶ S. Tsunashima and S. Sato, Bull. Chem. Soc. Japan, 1968, 41, 284.
 ⁷ R. G. Bergman and W. L. Carter, J. Amer. Chem. Soc., 1969, 91, 7411.

- ¹ K. G. Bergman and W. L. Carter, J. Amer. Chem. Soc., 1909, 91, 1411.
 ⁸ L. M. Stephenson and J. I. Brauman, J. Amer. Chem. Soc., 1971, 93, 1988.
 ⁹ R. J. Crawford and A. Mishra, J. Amer. Chem. Soc., 1966, 88, 3963.
 ¹⁰ D. F. Ring and B. S. Rabinovitch, J. Phys. Chem., 1968, 72, 191.
 ¹¹ J. Metcalfe and E. K. C. Lee, J. Amer. Chem. Soc., in the press.
 ¹² H. E. O'Neal and S. W. Benson, J. Phys. Chem., 1968, 72, 1866.
 ¹³ E. B. Klunder and R. W. Carr, Jun., Chem. Comm., 1971, 742.
 ¹⁴ C. Blumstein, D. Henfling, C. M. Sharts, and H. E. O'Neal, Internat. J. Chem. Kinetics., 1970, 2, 1.
 ¹⁵ C. McKnight and F. S. Rowland, J. Amer. Chem. Soc., 1966, 88, 3179.

- ¹⁵ C. McKnight and F. S. Rowland, J. Amer. Chem. Soc., 1966, **88**, 3179.
 ¹⁶ R. L. Russell and F. S. Rowland, unpublished results.
 ¹⁷ R. J. Cvetanovic, H. E. Avery, and R. S. Irwin, J. Chem. Phys., 1967, **46**, 1993.
 ¹⁸ R. G. Shortridge, Jun., W. Yang, and E. K. C. Lee, Mol. Photochem., 1969, **1**, 325.
 ¹⁹ C. S. Elliott and H. M. Frey, Trans. Faraday Soc., 1968, **64**, 2352.